Genetic Variants in HBS1L-MYB rs9399137 and rs11759553 Associated with Elevated HbF Levels Among Filipino β° -deletion Carriers

Lai Kuan Teh^{1*}, Koh Sam Yu¹, Shi Min Chua¹, Elizabeth George^{2,3}, Mei I Lai³, Lily Wong⁴

¹Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia

²Assunta Hospital, Jalan Templer, Petaling Jaya, Selangor, Malaysia

³Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

⁴Department of Medicine, Hospital Queen Elizabeth, Kota Kinabalu, Sabah, Malaysia

In Malaysia, Sabah population constitutes the most number of β -thalassaemia cases ranging from asymptomatic to transfusion dependent. Filipino β° -deletion has been reported as the predominant mutation in Sabah [1]. Despite having the same primary mutation, coinheritance of genetic variants at HbF quantitative trait loci of HBS1L-MYB intergenic region may cause variability in clinical features by affecting the haemoglobin (Hb) subtypes level, especially HbF. Study suggested that MYB would activate γ -globin repressor gene directly and subsequently initiate the molecular HbF repression mechanisms. Polymorphisms within HBS1L-MYB intergenic region would inhibit binding of transcription factor on MYB and leading to elevation of HbF levels [2]. This can act as an ameliorating factor in the clinical presentation of β -thalassaemia patients [3]. This study aimed to elucidate the association of Hb subtypes levels with three HBS1L-MYB variants among 134 Filipino β° deletion carriers. PCR-RFLP analysis was done for HBSIL-MYB rs9399137 (T \rightarrow C) and rs11759553 (A \rightarrow T) (Fig.1).

Fig. 1: Genotyping analysis for HBSIL-MYB rs4895441 ($A \rightarrow G$) (A), rs9399137 ($T \rightarrow C$) (B) and rs11759553 ($A \rightarrow T$) (C). (A) For rs4895441, genotype A/A with 2 bands (578 & 467bp); genotype A/G with 2 bands (467 & 111bp) and genotype G/G with 2 bands (578 & 111bp). (B) For rs9399137, genotype T/T with 2 bands (365 & 243 bp); genotype T/C with 3 bands (365, 243 & 178 bp) and genotype C/C with 2 bands (365 & 178 bp).(C). For rs11759553, genotype A/A with 2 bands (254 & 145 bp); genotype A/T with 3 bands (254, 161 & 145 bp) and genotype T/T with 2 bands (254 & 161 bp).

Through the genotyping analysis, two HBS1L-MYB variants (rs9399137, MAF = 0.18 and rs11759553, MAF = 0.190) were found with significant minor allele frequency (MAF) which is greater than .05. HBS1L-MYB rs4895441 showed no influential effect on Hb subtypes level. However, rs9399137 and rs11759553 showed significant different in HbF level. HbF level was elevated when Filipino β° -deletion carriers co-inherited with HBS1L-MYB rs9399137 or rs11759553 (Fig.2).

Fig. 2: Association of HBS1L-MYB (A) rs4895441 (*p-value*: 0.590), (B) rs9399137 (*p-value*: 0.007**) and (C) rs11759553 (*p-value*: 0.000***) genotypes with percentage of HbF level.

In conclusion, HBS1L-MYB rs9399137 and rs11759553 are significantly in elevating HbF levels which are not seen in rs4895441, making it a potent therapeutic target for gene therapy. The significant difference in Hb subtypes levels across the genotype variants had suggested the importance to include the detection of HBS1L-MYB rs9399137 and rs11759553 among Filipino β° -deletion patients in order to provide proper patient management.

Keywords: HBS1L-MYB variants, Filipino β°-deletion, rs9399137, rs11759553, rs4895441 *** Correspondence:** tehlk@utar.edu.my

Acknowledgements

This study was funded by UTAR Research Fund (UTARRF) 2016 Cycle 1 by Universiti Tunku Abdul Rahman (IPSR/RMC/UTARRF/2016-C1/T6).

References:

- 1. Teh, L. K., et al., *Molecular basis of transfusion dependent beta-thalassemia major patients in Sabah.* Journal of Human Genetics. 2014. **59**: p. 119-123.
- 2. Stadhouders, R., et al., *HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers.* The Journal of Clinical Investigation, 2014.**124**(4): p. 1699-1710.
- 3. Cyrus, C., et al., *Existence of HbF enhancer haplotypes at HBS1L-MYB intergenic region in transfusiondependent Saudi* β-thalassemia patients. BioMed Research International, 2017. p. 1-7.