Genetic Variants in HBS1L-MYB rs9399137 and rs11759553 Associated with Elevated HbF Levels Among Filipino β°-deletion Carriers

Lai Kuan Teh1*, Koh Sam Yu1, Shi Min Chua1, Elizabeth George2,3, Mei I Lai3, Lily Wong4

1Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
2Assunta Hospital, Jalan Templer, Petaling Jaya, Selangor, Malaysia
3Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
4Department of Medicine, Hospital Queen Elizabeth, Kota Kinabalu, Sabah, Malaysia

In Malaysia, Sabah population constitutes the most number of β-thalassaemia cases ranging from asymptomatic to transfusion dependent. Filipino β°-deletion has been reported as the predominant mutation in Sabah [1]. Despite having the same primary mutation, co-inheritance of genetic variants at HbF quantitative trait loci of HBS1L-MYB intergenic region may cause variability in clinical features by affecting the haemoglobin (Hb) subtypes level, especially HbF. Study suggested that MYB would activate γ-globin repressor gene directly and subsequently initiate the molecular HbF repression mechanisms. Polymorphisms within HBS1L-MYB intergenic region would inhibit binding of transcription factor on MYB and leading to elevation of HbF levels [2]. This can act as an ameliorating factor in the clinical presentation of β-thalassaemia patients [3]. This study aimed to elucidate the association of Hb subtypes levels with three HBS1L-MYB variants among 134 Filipino β°-deletion carriers. PCR-RFLP analysis was done for HBSIL-MYB rs4895441 (A→G) while tetra-primers ARMS PCR analysis was done for HBSIL-MYB rs9399137 (T→C) and rs11759553 (A→T) (Fig.1).

A. B. C.

Fig. 1: Genotyping analysis for HBSIL-MYB rs4895441 (A→G) (A), rs9399137 (T→C) (B) and rs11759553 (A→T) (C). (A) For rs4895441, genotype A/A with 2 bands (578 & 467bp); genotype A/G with 2 bands (467 & 111bp) and genotype G/G with 2 bands (578 & 111bp). (B) For rs9399137, genotype T/T with 2 bands (365 & 243 bp); genotype T/C with 3 bands (365, 243 & 178 bp) and genotype C/C with 2 bands (365 & 178 bp). (C) For rs11759553, genotype A/A with 2 bands (254 & 145 bp); genotype A/T with 3 bands (254, 161 & 145 bp) and genotype T/T with 2 bands (254 & 161 bp).
Through the genotyping analysis, two HBS1L-MYB variants (rs9399137, MAF = 0.18 and rs11759553, MAF = 0.190) were found with significant minor allele frequency (MAF) which is greater than 0.05. HBS1L-MYB rs4895441 showed no influential effect on Hb subtypes level. However, rs9399137 and rs11759553 showed significant different in HbF level. HbF level was elevated when Filipino β°-deletion carriers co-inherited with HBS1L-MYB rs9399137 or rs11759553 (Fig.2).

Fig. 2: Association of HBS1L-MYB (A) rs4895441 (p-value: 0.590), (B) rs9399137 (p-value: 0.007**) and (C) rs11759553 (p-value: 0.000***) genotypes with percentage of HbF level.

In conclusion, HBS1L-MYB rs9399137 and rs11759553 are significantly in elevating HbF levels which are not seen in rs4895441, making it a potent therapeutic target for gene therapy. The significant difference in Hb subtypes levels across the genotype variants had suggested the importance to include the detection of HBS1L-MYB rs9399137 and rs11759553 among Filipino β°-deletion patients in order to provide proper patient management.

Keywords: HBS1L-MYB variants, Filipino β°-deletion, rs9399137, rs11759553, rs4895441

Correspondence: tehlk@utar.edu.my

Acknowledgements

This study was funded by UTAR Research Fund (UTARRF) 2016 Cycle 1 by Universiti Tunku Abdul Rahman (IPSR/RMC/UTARRF/2016-C1/T6).

References