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1 INTRODUCTION 

The main purpose of this paper is to simulate the 

behavior of red blood cells as well as complex 

currents in vascular pathways such as the carotid 

artery and drug delivery analysis in this artery. 

Recently, a combination of the Boltzmann lattice 

method with the immersion boundary method has 

been used to simulate the movement and 

deformation of red blood cells. The immersion 

boundary method has been successfully used in 

recent decades to simulate the elastic and flexible 

dynamics of immersion in the fluid. This method 

was first introduced by Peskin [1] to study the 

flow around the heart valve and later expanded 

as an efficient method in solving problems related 

to fluid-solid interaction. This method is a 

combination of mathematical formulation and 

numerical methods. The mathematical 

formulation of the immersive boundary method 

includes the Eulerian and Lagrangian variables 

related to the Dirac delta function. In the 

discretization of the equations related to the 

immersion boundary method, a Cartesian 

network is used for Eulerian variables, and a 

linear curve network for Lagrangian variables is 

used. The curvilinear grid can move freely within 

the Cartesian grid and does not need to adapt to 

the Eulerian grid. In the present study, the 

deformation of erythrocytes and how they are 

delivered in a blood vessel are studied using a 

combination of the Boltzmann network method 

and the immersion boundary. The Boltzmann 

lattice method (LBM) is a robust numerical 

technique based on kinetic theory for fluid field 

simulation [2-5]. Compared to conventional 

computational fluid dynamics methods, the 

advantages of using the Boltzmann lattice 

method include simple calculation method, simple 

execution, and use of Simple techniques in the 

analysis of complex geometries are the 

Boltzmann equations, resulting in a discretization 

fi(x,t) = f(x,c,t) that describes the probability of the 

existence of a particle in a lattice with position x 

at time t. While moving at a speed of ci, according 

to the conventional numerical methods commonly 

used to study fluid behavior, the kinetic nature of 

the Boltzmann lattice involves easy 

implementation in complex boundary conditions. 

In addition, in the macroscopic method of 

computational fluid dynamics, The pressure field 

is usually calculated by solving Poisson equations 

obtained from the Navier-Stokes incompressible 
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equation, which is usually time-consuming. In 

contrast, the pressure distribution can be easily 

calculated in the Boltzmann lattice method by 

solving a simple state equation. In addition, the 

conversion of mesoscopic values of the 

distribution function to macro parameters The 

scope is a simple mathematical process. Blood 

flow simulations have also been considered in 

previous studies. Quiza et al. [6] have proposed a 

multidimensional model for studying blood flow 

using the finite element method. Butner et al. [7] 

have proposed a three-dimensional model to 

simulate the developed flow within blood vessels. 

Deschamps et al. [8] directly modeled blood flow 

within a vessel without creating additional 

networks and complex details. In the present 

study, the methods presented in references [9 

and 10] were used to simulate the curved vessel 

wall, and neohookin relations were used to 

calculate the shear stress on the viscoelastic wall 

erythrocyte cell membrane. Finally, the simulation 

results have been compared to the results 

obtained from previous studies. 

2 MATH 

Particle kinetic theory, especially the Boltzmann 

lattice method, has been significantly developed 

to analyze different numerical simulation 

problems [11-13]. The Boltzmann lattice method 

is inferred from the gas lattice method and the 

discretization of the Boltzmann equation. This 

method is a powerful numerical technique for 

simulating fluid flow [11, 14, 15], heat transfer [17, 

16], and various other applications than traditional 

computational fluid dynamics methods. Unlike the 

classical Navier-Stokes macroscopic approach, 

the mesoscopic model uses fluid flow simulation 

[16]. This method uses fluid particle motion 

modeling to achieve macroscopic fluid properties 

such as velocity and pressure. In this method, the 

fluid field is discretized into Cartesian uniform 

cells, and each cell is assigned a constant 

amount of distribution function that represents the 

number of fluid particles moving in the direction of 

the discrete directions. Different models have 

been presented based on the number of 

dimensions studied and the number of speed 

directions. This paper is based on a two-

dimensional Boltzmann network with nine 

directional velocities (D2Q9). The velocity 

directions in a D2Q9 model are shown in Fig. 1, 

and the velocities shown are as follows, where c 

=∆x⁄∆t and K represents the velocity vectors. 

 

 

 

The model used in this article is the same model 

mentioned other studies [16]. The distribution 

function is computed by solving the Boltzmann 

equation, which results from a special 

discretization of the Boltzmann kinetic equation. 

Following the Bhatnagar-Gross-Krook 

approximation, the Boltzmann equation is 

formulated as follows: 

       (2) 
 

Where ∆t represents the time step, c_k is the 

discrete speed of the network in the direction of k, 

τ is the time of comfort of the network,
eq

kf  is the 

function of the equilibrium distribution and F_k is 

the external force applied in different directions of 

the network speed. 

The equilibrium distribution function 

mentioned in equation (2) is calculated as follows: 

 

      (3) 

 

Where for k = 0 weight ωk= 4/9, for k = 1,2,3,4 

weight ωk  = 1/9, k = 5,6,7,8 weight ωk = 1/36 and 

also cs  = ck/√3 is macro values of fluid such as 

density and velocity are calculated as follows: 

 

 (4) 

 
Figure 1:  Boltzmann D2Q9 model of the network 
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2.1 Curve boundary conditions 

According to Fig. 2, it can be seen that the black 

circle xw corresponds to the curve boundary, the 

hollow circle xf corresponds to the points of the 

fluid field, and the gray circle xb Corresponds to 

the solid points. To apply the streaming phase on 

the boundary, we need to calculate f ̃ (xb,t), the 

next distance between the points in the fluid field 

and the boundary of the curve is calculated as 

follows: 

 

     (5) 

 

Fig. 3 shows three models of solid boundary 

placement in a network. Figure 3a shows a 

typical solid boundary in which the boundary is 

exactly in the middle of the fluid and solid field, in 

which case ∆ = 0.5 is considered. Figures 3b and 

3c show conditions in which the value is less than 

or greater than 0.5. In all three cases, the value of 

the reflected distribution function fa(x,t+∆t) is 

unknown.  

To calculate this value in the node xf  

intermediate must be used. The method used to 

calculate the velocity field in the face of the 

curved boundary of the method used in this 

project is similar to the method proposed in other 

studies [18]. To calculate the distribution function 

in the solid part fa(xb,t) based on the boundary 

nodes located in the fluid field, the solid boundary 

conditions are used considering the distance 

between the fluid node and the boundary. The 

Chapman-Anscog model for calculating the 

collision phase distribution function is as follows: 

 

 

 

                                 (6)

  

 

                       (7)

  

 

         (8a)

  

 

 (8b) 

 

2.2  Immersion border 

The submerged boundary method is derived from 

the principle that deformation and movement of 

the boundary create a force that tends to return 

the boundary to its original shape or location. The 

connection between the membrane and the 

surrounding fluid is achieved by distributing local 

membrane and fluid forces. To satisfy the no-slip 

condition, the velocity in the membrane and the 

surrounding fluid must be the same, so the local 

fluid force sentence is calculated as follows: 

 

                  (9)

  

The relationship between the immersion 

boundary and the fluid flow by the membrane 

force is as follows [19], 

 
Figure 3: Solid-State boundary image in the Boltzmann 
Lattice 

  
Figure 2: Schematic view of a Cartesian grid and curved 
border 
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               (10)

  

Where f is the force density, F is the membrane 

force, and s are the followers of the immersion 

boundary nodes. The structural model used for 

cell membranes in this paper is the Neo-Hawkin 

equation, which has a strain energy function as: 

 

                        (11)

  

For erythrocytes, the stress along the membrane 

is calculated as follows 

 

                               (12) 

 

Finally, the membrane force, which is the result of 

the stress of adjacent nodes (j, i) and is 

calculated as follows: 

 

                                            (13)

  

2.3 Validation of results 

To simulate erythrocytes in shear flow, the values 

of different parameters are determined according 

to Table 1. The most important property of the 

flow between two parallel plates is that the shear 

stress of the fluid remains constant. In other 

words, the velocity changes concerning the 

distance between two plane lines. For this 

purpose, to determine the accuracy of the 

simulation of velocity changes between two 

plates for different values of comfort time has 

been investigated (Figure 4). As can be seen, the 

comfort time τ = 0.6 had the closest profile to the 

linear profile used in this simulation. 

Table I:  Dimensional parameters and values 
 

Parameter Value 

Cell radius  

Channel diameter  

Shear modulus of elasticity 
( ) 

 

Shear rate (γ ̇)  

Re  

  

 

5 

  

 

 

 

 
 

Figure 4: Speed profile between two parallel plates for 
different values of comfort line 
 

 
 

Figure 5:  (A) Physical model (B) Elliptical cell deformation 

 

A 

B 
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Next, the deformation of an erythrocyte ellipse 

cell is examined. As shown in Fig. 5-a, the red 

blood cells move at constant and opposite 

velocities in the center of the canal and the upper 

and lower walls. Fig. 5-b shows the results of the 

deformation of an elliptical cell, which is in good 

agreement with the results presented by Begchi 

et al. [19]. 

  

 

 

3  Results and Discussion 

In the previous section, the original shape of the 

cell was assumed to be oval, and its deformation 

was compared with Bagchi’s results. However, 

the actual shape of the cell is in the form of two 

biconcave, expressed by the following equation. 

 

 

(14)

  

In addition, these two circular models have been 

simulated to show the capability of the mentioned 

method due to their versatility. The process of 

deformation of different primary red blood cell 

geometries under shear flow (Table 1) is shown 

in Fig. 6. Also shown in Fig. 7 is the  

 

deformation associated with the displacement of 

a red blood cell in a canal. Fig. 7 shows the 

deformation and movement of a red blood cell in 

a channel with the initial geometry of two curves. 

The difference between Web Part A of this shape 

is in how the cell is positioned. As can be seen, in 

Fig. 6-a, the cell is located vertically in the flow 

path, while in Fig. 6-b, the red blood cell is placed 

horizontally in the flow path. 

 In the distal part, the flow inside a blood 

artery is analyzed to show the ability to simulate 

the flow in a bifurcated artery with complex 

geometry. Fig. 8a shows the geometry of the 

carotid artery as an example of a blood vessel 

with complex geometry. Fig. 8b shows the flow 

lines inside this blood vessel. 

To ensure the accuracy of the results, the 

velocity profiles in the three identified sections 

were compared with the results reported by 

Steinhaven et al. [20] (Figure 1). As can be seen, 

the obtained velocity profiles have an acceptable 

agreement with the laboratory results. 

  

 

 

B 

 
Figure 6: Red blood cells deformation with different 
geometries  

 

 

 
 

Figure 7: Deformation of red blood cells during movement in 
a canal 
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As shown in Fig. 9, by moving from the bottom of 

the vessel to the branch, the maximum point of 

the velocity profile is gradually drawn towards the 

right branch. Also, in the final section, it is 

observed that the velocity profile in the left fork is 

flatter than the profile for the right fork. In this 

section, after confirming the accuracy of the 

simulation, how to block the blood artery and drug 

delivery is analyzed. 

If blood flow to the blood vessels stops, the 

target tissue is destroyed by a lack of oxygen. If 

blood flow outside the body does not stop after 

serious injuries, a person will die from bleeding. 

However, the bleeding usually stops within 

minutes of the incision. Occasionally, blood can 

clot in blood vessels due to abnormal substances 

floating in the blood or tissue damage. Any 

deficiency in blood clotting control agents can 

increase or decrease the risk of blood clotting. In 

this section, arterial tissue damage is simulated in 

Fig. 10. Careful examination of this figure shows 

the effect of artery occlusion and its effect on 

blood flow. As can be seen, obstruction of the 

pathway causes circulatory flow and increases 

the likelihood of blood clotting or accumulation of 

adipose tissue in these areas. Drug delivery 

involves transferring a drug compound into the 

body to achieve the desired therapeutic effect. In 

this process, both the quantity and quality of the 

drugs needed by tissue are very important.  

Fig. 11 shows the various spherical particles that 

 

 
 

Figure 8: (a) Scheme and (b) flow lines in the carotid artery 

 

B 

 

 

 
Figure 9: Velocity profiles at different sections in the carotid artery 

 

 
Figure 10: Flow lines in the state of carotid artery occlusion 
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are released from different arteries in different 

areas. These areas are shown in Fig. 8 (a), as it 

can be seen that the particles released in 

different areas have chosen different paths for 

themselves. A closer look at these results reveals 

that about 65% of the particles released before 

cutting A choose the right fork, and about 70% of 

the particles released between cutting A and B 

choose the left fork to continue their path. These 

results show that by controlling the injection site 

of the drug in this artery, the quantity of drug 

distribution between the two branches can be 

controlled. 

 

Accurately predicting drug delivery is a critical 

task in drug development research and clinical 

trials [1,2]. It requires careful consideration of 

physiological conditions, such as hematocrit level 

(the volume ratio between red blood cell and the 

whole blood) [3,4], vessel geometry and flow 

conditions [5-7], drug carrier size and shape [3,8], 

dissolution rate [9] and external stimuli [10,11]. 

For small particles in red blood cell (RBC) 

suspensions, such as nanoparticles (NP) and 

platelets, as was mentioned in the aims of this 

paper, a new mathematical method is applied in 

this paper for simulation of this process which is 

aligned to the recent studies that have 

demonstrated that local flow field disturbances 

caused by RBC translation and deformation can 

enhance particle dispersion [3,12-16]. The 

migration of particles in RBC suspensions under 

shear has been shown to behave like a random 

walk process [17,18], with a dispersion rate much 

larger than thermal diffusion. Therefore, accurate 

predictions of NP dispersion in RBC suspensions 

must consider fluid-structure interaction between 

the immersed solid bodies (particles and cells) 

and the surrounding fluid. Previously-developed 

models for predicting NP dispersion in RBC 

suspensions have relied primarily on empirical 

data fitting. The method in this paper is aligned 

with Aarts et al. experimentally studied shear-

induced platelet diffusivity (D), which was fitted 

with shear rate (η) as a power-law D = kηn, 

where k is a constant and n is a function of 

hematocrit, and the results were close to ours 

[19]. However, the model parameters are 

obtained empirically rather than predicted from 

the underlying physics. Another similar research 

was Decuzzi et al. extended the Taylor–Aris 

theory to calculate an effective NP diffusion rate 

that considers wall permeability and blood 

rheology [20,21]. They also reported a three-fold 

increase in the dispersion rate of 1 µm compared 

to thermal diffusion [16]. Recently, Fedosov’s 

group systematically studied micro-and 

nanoparticles in drug delivery, including particle 

size, shape effect, and RBC influence on particle 

margination and adhesion probabilities [3]. 

However, no analytical formula or quantitative 

rule directly predicts the NP dispersion rate so 

far, which is much needed in large-scale drug 

delivery simulations, a developed method of this 

study [20-26]. 

4 CONCLUSION 

This study aimed to model the deformation of red 

blood cells and analyze how drugs are delivered 

and blocked in a blood vessel using the 

Boltzmann network method. Compared to 

conventional computational fluid dynamics 

methods, the Boltzmann network method can 

simulate complex problems with specific 

boundary conditions with a simple computational 

process. In this research, the flexibility of this 

 
Figure 11: The path of the particles released in the carotid 
artery 
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method has been evaluated by examining various 

parameters. The important conclusions are (1) 

Simulate the flow between two parallel plates, the 

most suitable comfort time is τ = 0.6. (2) 

Deformation of an elliptical cell obtained is in 

good agreement with the results reported by 

previous researchers. (3) Simulation of red blood 

cell deformation and movement with different 

geometries shows that this method has a high 

ability to analyze this type of problem. (4) 

Confirms the comparison of flow velocity profiles 

in the carotid artery with previous results. (5) 

Simulation results show that occlusion of blood 

vessels increases the likelihood of vortex flow of 

blood clots or accumulation of adipose tissue in 

these areas. (6) Analysis of drug delivery results 

indicates that the quantity of drug distribution 

between the two branches can be controlled by 

controlling the injection site. 
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