Genetic Basis of Supernumerary Tooth

Suhailiza Saharudin, Kannan Thirumulu Ponnuraj, Sarliza Yasmin Sanusi


Odontogenesis is a complex process regulated by both genetic and molecular controls. The development of a tooth in the embryo stage is controlled by a series of signals which occur between tooth-forming epithelium and neural crest-derived ectomesenchyme. Though many genes are involved in tooth formation involving major signalling molecules, the bone morphogenetic protein and fibroblast growth factor are the most important ones involved in odontogenesis. Supernumerary tooth occurs because of imbalance in the expression of the signalling pathways and their inhibitors. This review highlights the various signalling molecules that play a role in odontogenesis in order to provide a better understanding on of the molecular mechanisms involved in the formation of supernumerary tooth in humans.


Genetics; odontogenesis; signalling molecules; supernumerary tooth

Full Text:



Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. International Journal of Biological Sciences. 2009;5(3):226-243.

Huysseune A, Sire JY, Witten PE. Evolutionary and developmental origins of the vertebrate dentition. Journal of Anatomy. 2009;214(4):465-476.

Chinsembu KC. Teeth are bones: signature genes and molecules that underwrite odontogenesis. JMGG. 2012;4(2):13-24.

Schulze C. Developmental abnormalities of the teeth and jaws. 1970. in: Gorlin, R.J., Goldman, H.M. (Eds.), Thomas’s Oral Pathology. Mosby Company, St Louis, pp. 96-183.

Scheiner MA, Sampson WJ. Supernumerary teeth: a review of the literature and four case reports. Australian Dental Journal. 1997;42(3):160-165.

Rajab LD, Hamdan MA. Supernumerary teeth: review of the literature and a survey of 152 cases. International Journal of Paediatric Dentistry. 2002;12(4):244-254.

Pani SC. The genetic basis of tooth agenesis: basic concepts and genes involved. Journal of the Indian Society of Pedodontics and Preventive Dentistry. 2011;29(2):84-89.

Subasioglu A, Savas S, Kucukyilmaz E, Kesim S, Yagci A, Dundar M. Genetic background of supernumerary teeth. European Journal of Dentistry. 2015;9(1):153-158.

Cammarata-Scalisi F, Avendaño A, Callea M. Main genetic entities associated with supernumerary teeth. Archivos Argentinos de Pediatría. 2018;116(6):437-444.

Mallineni SK. Supernumerary Teeth: Review of the Literature with Recent Updates. Conference Papers in Science. 2014;2014: Article ID 764050, 6 pages.

Gupta S, Praveen Kumar PS. A study on prevalence, complications, and possible etiologic factors of supernumerary teeth in 6–12‑year‑old schoolchildren of Rohtak, India. Indian Journal of Dental Sciences. 2017;9:141-147.

Tucker AS, Sharpe P. The cutting edge of mammalian development; how the embryo makes teeth. Nature Reviews Genetics. 2004;5(7):499-508.

Sartaj R, Sharpe P. Biological tooth replacement. Journal of Anatomy. 2006;209(4): 503-509.

Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development. 2000;127(2):403-412.

Bei M. Molecular genetics of tooth development. Current Opinion in Genetics & Development. 2009;19(5):504-510.

Brook AH. Multilevel complex interactions between genetic, epigenetic and environmental factors in the aetiology of anomalies of dental development. Archives of Oral Biology. 2009;54(Supp 1): S3-S17.

Nakamura T, Fukumoto S. Genetics of supernumerary tooth formation. Journal of Oral Biosciences. 2013;55(4):180-183.

Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes. 2018;May16;9(5):pii: E255.

Cobourne MT, Sharpe PT. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Archives of Oral Biology. 2003;48(1):1-14.

Butler PM. Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proceedings of the Zoological Society of London. 1939;109:1-36.

Galluccio G, Castellano M, La Monaca C. Genetic basis of non-syndromic anomalies of human tooth number. Archives of Oral Biology. 2012;57(7):918-930.

Osborn JW. Morphogenetic gradients: fields versus clones. In: Butler PM, Joysey KA. editors. Development, function and evolution of teeth. Academic Press; London: 1978. pp. 171–201.

Townsend G, Harries EF, Lesot H, Clauss F, Brook AH. Morphogenetic fields within the human dentition: a new clinically relevant synthesis of an old concept. Archives of Oral Biology. 2009;54s: S34-S44.

Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signalling. Development Cell. 2006;11(2):181-190.

Fleming PS, Xavier GM, DiBiase AT, Cobourne MT. Revisiting the supernumerary: the epidemiological and molecular basis of extra teeth. British Dental Journal. 2010;208(1):25-30.

Murashima-Suginami A, Takahashi K, Sakata T, Tsukamoto H, Sugai M, Yanagita M, Shimizu A, Sakurai T, Slavkin HC, Bessho K. Enhanced BMP signaling results in supernumerary tooth formation in USAG-1 deficient mouse. Biochemical and Biophysical Research Communications. 2008;369:1012-1016.

Thesleff I, Sharpe P. Signalling networks regulating dental development. Mechanisms of Development. 1997;67(2):111-123.

Mason JM, Morrison DJ, Basson MA. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signalling. Trends in Cell Biology. 2006;16(1):45-54.

Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development. Development. 2004;131(12):2875-2885.

Jernvall J, Thesleff I. Reiterative signalling and patterning during mammalian tooth morphogenesis. Mechanisms of Development. 2000;92(1):19-29.

Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5),773-779.

Schwabe GC, Opitz C, Tinschert S, Mundlos S, Sharpe PT. Molecular mechanisms of tooth development and malformations. Oral Biosciences & Medicine. 2004;1(2):77-91.

Seppala M, Fraser GJ, Birjandi AA, Xavier GM, Cobourne MT. Sonic Hedgehog Signaling and Development of the Dentition. Journal of Developmental Biology. 2017;5(2):6.

Logan CY, Nusse R. The Wnt signalling pathway in development and disease. Annual Review of Cell and Developmental Biology. 2004;20:781-810.

Nakamura T, de Vega S, Fukumoto S, Jimenez L, Unda F, Yamada Y. Transcription factor epiprofin is esssential for tooth morphogenesis by regulating epithelial cell fate and tooth number. Journal of Biological Chemistry. 2008;283(8):4825-4833.

Järvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin singalling. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(49):18627-18632.

Laurikkala J, Mikkola M, Mustonen T, Åberg T, Koppinen P, Pispa J, Nieminen P, Galceran J, Grosschedl R, Thesleff I. TNF signalling via the ligand-receptor pair ectodysplasin and edar controls the function of epithelial signalling centers and is regulated by Wnt and activin during tooth organogenesis. Developmental Biology. 2001;229(2):443-455.

Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey EE, Atit R, Dlugosz AA, Millar SE. Wnt/beta-catenin signalling directs multiple stages of tooth morphogenesis. Developmental Biology. 2008;313(1):210-224.

Yang J, Wang SK, Choi M, Reid BM, Hu Y, Lee YL, Herzog CR, Kim-Berman H, Lee M, Benke PJ, Lloyd KC, Simmer JP, Hu JC. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Molecular Genetics & Genomic Medicine. 2015;3:40-58.

Sedano HO, Gorlin R. Familial occurrence of mesiodens. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 1969;27(3):360-362.

Thesleff I. Developmental biology and building a tooth. Quintessence International. 2003;34(8):613-620.

Ducy P, Zhang R, Geoffroy V, Ridall A, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747-754.

Camilleri S, McDonald F. RUNX2 and dental development. European Journal of Oral Sciences. 2006;114(5):361-373.

Quack I, Vonderstrass B, Stock M, Aylsworth AS, Becker A, Brueton L, Lee PJ, Majewski F, Mulliken JB, Suri M, Zenker M, Mundlos S, Otto F. Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. American Journal of Human Genetics. 1999;65(5):1268–1278.

Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Human Mutation. 2002;19(3):209-216.

Currall V, Clancy R, Dimond D, Amirfeyz R, Kershaw C, Gargan M. Cleidocranial dysplasia. Current Orthopaedics. 2007;21(2):159–162.

Kolokitha OE, Papadopoulou AK. Impaction and apical root angulation of the maxillary central incisors due to supernumerary teeth: combined surgical and orthodontic treatment. American Journal of Orthodontics and Dentofacial Orthopedics. 2008;134(1):153-60.

Li Y, Pan W, Xu W, He N, Chen X, Liu H, Darryl Quarles L, Zhou H, Xiao Z. RUNX2 mutations in Chinese patients with cleidocranial dysplasia. Mutagenesis. 2009;24(5):425-431.

Ryoo HM, Kang HY, Lee SK, Lee KE, Kim JW. RUNX2 mutations in cleidocranial dysplasia patients. Oral Diseases. 2010;16(1):55-60.

Tang S, Xu Q, Xu X, Du J, Yang X, Jiang Y, Wang X, Speck N, Huang T. A novel RUNX2 missense mutation predicted to disrupt DNA binding causes cleidocranial dysplasia in a large Chinese family with hyperplastic nails. BMC Medical Genetics. 2007;8:82-88.

Jensen BL, Kreiborg S. Development of the dentition in cleidocranial dysplasia. Journal of Oral Pathology & Medicine. 1990;19(2):89-93.

Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, Stein GS, van Wijnen AJ. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Research. 2003;63(17):5357-5362.

D’Souza RN, Åberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I. Cbfa 1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. 1999;126(13):2911-2920.

Wang XP, Åberg T, James MJ, Levanon D, Groner Y, Thesleff I. RUNX2 (CBFA1) inhibits Shh signalling in the lower but not upper molars of mouse embryos and prevents the budding of putative successional teeth. Journal of Dental Research. 2005;84(2):138-143

Wang XP, O’Connell DJ, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, Cavallesco R, Kim H, Park PJ, Harada H, Kucherlapati R, Maas RL. Apc inhibition of Wnt signalling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development. 2009;136(11):1939-1949

Wang XP, Fan J. Molecular genetics of supernumerary tooth formation. Genesis. 2011;49(4):261-277.

Jonason JH, Xiao G, Zhang M, Xing L, Chen D. Post-translational regulation of RUNX2 in bone and cartilage. Journal of Dental Research. 2009;88(8):693-703.

Järvinen E, Shimomura-Kuroki J, Balic A, Jussila M, Thesleff I. Mesenchymal wnt/beta-catenin signaling limits tooth number. Development. 2018;145(4):dev158048.

Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harbor Perspectives in Biology. 2012;4:a008425.

Jensen BL, Kreiborg S. Development of the dentition in cleidocranial dysplasia. Journal of Oral Pathology & Medicine. 1990;19:89-93.

Nieminen P, Morgan NV, Fenwick AL, Parmanen S, Veistinen V, Mikkola ML, Giraud A, Judd L, Arte S, Brueton LA, Wall SA, Mathijssen IM, Maher ER, Wilkie AO, Kreiborg S, Thesleff I. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption and supernumerary teeth. American Journal of Human Genetics. 2011;89:67-81.

D’Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G, Thesleff I. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. 1999;126:2911-2920.

Takahashi M, Hosomichi K, Yamaguchi T, Yano K, Funatsu T, Adel M, Haga S, Maki K, Tajima A. Whole-exome sequencing analysis of supernumerary teeth occurrence in Japanese individuals. Human Genome Variation. 2017;4:16046.

D'Souza RN, Klein OD. Unraveling the molecular mechanisms that lead to supernumerary teeth in mice and men: current concepts and novel approaches. Cells Tissues Organs. 2007;186(1):60-69.

Lu X, Yu F, Liu J, Cai W, Zhao Y, Zhao S, Liu S. The epidemiology of supernumerary teeth and the associated molecular mechanism. Organogenesis. 2017;13:3,71-82.

Copyright (c) 2019 Journal of Biomedical and Clinical Sciences (JBCS)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Flag Counter           


                                              Copyright © 2016 AMDI Publisher, Universiti Sains Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Sains Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
                                            Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.