Biocompatibility of Bioceramic Root Canal Sealers: A Review

Siti Aisyah Nadirah Ja'apar, Solachuddin Jauhari Arief Ichwan, Musliana Mustaffa


The advantageous technology in endodontics nowadays are bioceramic root canal sealers. The most favourable characteristics of bioceramics root canal sealers are biocompatibility, osteoinductivity and sealing ability. Advantageous characteristics and good bioceramic outcomes make them increasingly presented in the dental market, suitable for use in endodontics. However, the biocompatibility of recently developed bioceramic root canal sealers is not well understood due to the limited scientific evidence and methodological differences in the previous studies. Literature search was conducted from August 2020 until April 2021 through PubMed, Google Scholar and Scopus databases using the combination of terms such as “bioceramic root canal sealers”, “biocompatibility”, “root canal sealer”, “cytotoxicity” and “endodontics” to identify the most relevant articles from year 1991 until 2020. This article aimed to review the bioceramic root canal sealers with regards to the use in endodontics, biocompatibility, and in vivo studies. Bioceramic root canal sealers have a variable toxic potential at the cellular and tissue level, based on the current data. The methodological variability of the studies included in this study, as well as the somewhat contradictory findings, make it impossible to draw a conclusion about which type of bioceramic root canal sealer is more biocompatible. Hence, bioceramic root canal sealers were discovered to be biocompatible and comparable to other commercially available root canal sealers


Bioceramic root canal sealers, biocompatibility, cytotoxicity, endodontics, root canal sealers

Full Text:



Hench LL. Bioceramics: From Concept to Clinic. J Am Ceram Soc. 1991 Jul;74(7):1487-1510.

Hadi A, Ehsan HM, Azadeh A, Kumarz NM, Mohadeseh H. A Review of Endodontic Bioceramics. J Islam Dent Assoc Iran. 2016;28(1):20-33.

Kaur A, Shah N, Logani A, Mishra N. Biotoxicity of commonly used root canal sealers: A meta-analysis. J Conserv Dent 2015 Mar;18(2)83-88.

Aliuddin SK, Prakash P, Mohiuddin S, Ravula SR, Nallamilli LV, Dutt AD. Historical Milestones in Endodontics: Review of Literature. Int J Prev Clin Dent Res. 2017;4(1) 56-58.

Manfredi M, Figini L, Gagliani M, Lodi G. Single versus multiple visits for endodontic treatment of permanent teeth: a Cochrane systematic reviews. J Endo. 2008 Sep 1;34 (9):1041-1047.

Abusrewil SM, McLean W, Scott JA. The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent J. 2018 Oct 1;30(4):273-282.

Kumar RV, Shruthi C. Evaluation of the sealing ability of resin cement used as a root canal sealer: An in vitro study. J Conserv Dent. 2012;15(3):274-277.

Saygili G, Saygili S, Tuglu I, Capar ID. In Vitro Cytotoxicity of GuttaFlow Bioseal, GuttaFlow 2, AH-Plus and MTA Fillapex. Iran Endod J. 2017;12(3):354-359.

ØRstavik DA. Materials used for root canal obturation: technical, biological and clinical testing. Endodontic Topics. 2005 Nov;12(1):25-38.

Torabinejad M, Walton RE. Endodontics: Principles and Practice, fourth ed. Saunders/Elsevier, United Kingdom, 2009.

Khatavkar R, Hegde V. Importance of Patency In Endodontics. Endodontology. 2010 Jan;22:85-91.

Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, et al. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endo. 2011 May 1;37(5):673-677.

AL-Haddad A. Bioceramic-Based Root Canal Sealers: A Review. Int J Biomater. 2016 May 3;2016.

Collado-Gonzalez M, Tomas-Catala CJ, Onate-Sanchez RE, Moraleda JM, Rodriguez-Lozano FJ. Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH Plus on Human Periodontal Ligament Stem Cells. J Endo. 2017 May 1;43(5):816-822.

Dem K, Wu Y, Kaminga AC, Dai Z, Cao X, Zhu B. The push out bond strength of polydimethylsiloxane endodontic sealers to dentin. BMC Oral Health. 2019 Dec;19(1):1-6.

Rodríguez-Lozano FJ, Collado-González M, Tomás-Catalá CJ, García-Bernal D, López S, Oñate-Sánchez RE, et al. GuttaFlow Bioseal promotes spontaneous differentiation of human periodontal ligament stem cells into cementoblast-like cells. Dent Mater. 2019 Jan 1;35(1):114-124.

Yoshino P, Nishiyama CK, Modena KC, Santos CF, Sipert CR. In Vitro Cytotoxicity of White MTA, MTA Fillapex® and Portland Cement on Human Periodontal Ligament Fibroblasts. Braz Dent J. 2013 Apr;24(2):111-116.

Vitti RP, Prati C, Sinhoreti MA, Zanchi CH, e Silva MG, Ogliari FA, et al. Chemical-physical properties of experimental root canal sealers based on butyl ethylene glycol disalicylate and MTA. Dent Mater. 2013 Dec 1;29(12):1287-1294.

Saad AY. Physicochemical, cytotoxicity, and biological properties of calcium silicate-based root canal sealers: A literature review. SEJ. 2020 Sep 1;10(3):173.

Baraba A, Pezelj-Ribarić S, Roguljić M, Miletić I. Cytotoxicity of Two Bioactive Root Canal Sealers. Acta Stomatol Croat. 2016 March 17;50(1):8-13.

Silva EJ, Carvalho NK, Ronconi CT, De-Deus G, Zuolo ML, Zaia AA. Cytotoxicity Profile of Endodontic Sealers Provided by 3D Cell Culture Experimental Model. Braz Dent J. 2016 Dec;27(6):652-656.

Victoria-Escandell A, Ibañez-Cabellos JS, de Cutanda SBS, Berenguer-Pascual E, Beltrán-García J, García-López E, et al. Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials. Stem Cells Int. 2017 Jan 1;2017.

Colombo M, Poggio C, Dagna A, Meravini MV, Riva P, Trovati F, et al. Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent. 2018 Feb;10(2):e120.

Chang SW, Lee SY, Kang SK, Kum KY, Kim EC. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endo. 2014 Oct 1;40(10):1642-1648.

Benetti F, de Azevedo Queiroz ÍO, Oliveira PH, Conti LC, Azuma MM, Oliveira SH, et al. Cytotoxicity and biocompatibility of a new bioceramic endodontic sealer containing calcium hydroxide. Journal Brazilian Oral Research. 2019:33.

Lopez-Garcia S, Myong-Hyun B, Lozano A, García-Bernal D, Forner L, Llena C, et al. Cytocompatibility, bioactivity potential, and ion release of three premixed calcium silicate-based sealers. Clin Oral Investig. 2019 Aug 9:1-1.

Poggio C, Riva P, Chiesa M, Colombo M, Pietrocola G. Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent. 2017 Apr;9(4):e574.

Nair AV, Nayak M, Prasada LK, Shetty V, Kumar CV, Nair RR. Comparative Evaluation of Cytotoxicity and Genotoxicity of Two Bioceramic Sealers on Fibroblast Cell Line: An in vitro Study. J Contemp Dent Pract. 2018 Jun 1;19(6):656-661.

Song W, Sun W, Chen L, Yuan Z. In vivo Biocompatibility and Bioactivity of Calcium Silicate-Based Bioceramics in Endodontics. Front Bioeng Biotechnol. 2020 Oct 29;8;1113.

Mukhtar-Fayyad D. Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics. 2011 Dec 1;112(6):e137-e142.

Kim M, Yang W, Kim H, Ko H. Comparison of the biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements. J Endo. 2014 Oct 1;40(10):1649-1653.

Chang SW, Lee SY, Kang SK, Kum KY, Kim EC. Effects of Calcium Silicate Endodontic Cements on Biocompatibility and Mineralization-inducing Potentials in Human Dental Pulp Cells. J Endo. 2014 Aug 1;40(8):1194-1200.

Basak V, Bahar TE, Emine K, Yelda K, Mine K, Figen S, et al. Evaluation of cytotoxicity and gelatinases activity in 3T3 fibroblast cell by root repair materials. Biotechnol Biotechnol Equip. 2016 Sep 2;30(5):984-990.

Lee BN, Son HJ, Noh HJ, Koh JT, Chang HS, Hwang IN, et al. Cytotoxicity of newly developed ortho MTA root-end filling materials. J Endo. 2012 Dec 1;38(12):1627-1630.

EI Sayed MA, Saeed MH. In vitro comparative study of sealing ability of Diadent BioAggregate and other root-end filling materials. J Conserv Dent. 2012 Jul;15(3)249.

Song YS, Choi Y, Lim MJ, Yu MK, Hong CU, Lee KW, et al. In vitro evaluation of a newly produced resin-based endodontic sealer. Restor Dent Endod. 2016 Aug;41(3):189.

Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018 Jun;14(4):910.

Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology. 2007 Oct;8(10):839-845.

Fang Y, Eglen RM. Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discov. 2017 Jun;22(5):456-472.

Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017 Jul;32(4):266-277.

Hoffman LH, Breinan DR, Blaeuer GL. The Rabbit as a Model for Implantation: In Vivo and In Vitro Studies. In Embryo Implantation 1999 (pp. 151-160). Springer, New York NY.

Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J (Isfahan). 2012 Jan;9(1):111.

Bostrom M, O'Keefe R. What experimental approaches (eg, in vivo, in vitro, tissue retrieval) are effective in investigating the biologic effects of particles? J Am Acad Orthop Surg. 2008;16(Suppl 1):S63.

Doke SK, Dhawale SC. Alternatives to animal testing: A review. Saudi Pharm J. 2015 Jul 1;23(3):223-229.

Pasupuleti MK, Molahally SS, Salwaji S. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives. J Indian Soc Periodontol. 2016 Jul;20(4):360.

Rizzo LY, Golombek SK, Mertens ME, Pan Y, Laaf D, Broda J, et al. In Vivo Nanotoxicity Testing using the Zebrafish Embryo Assay. J Mater Chem B. 2013;1(32):3918-3925.

Kannan N, Shanmuga Sundar S, Balaji S, Amuthan A, Kumar NV, Balasubramanian N. Physiochemical characterization and cytotoxicity evaluation of mercury-based formulation for the development of anticancer therapeuticals. PLoS One. 2018;13(04):01-13.

Velozo-Sa VS, Pereira LR, Lima AP, Mello-Andrade F, Rezende MR, Goveia RM, et al. In vitro Cytotoxicity and in vivo Zebrafish Toxicity Evaluation of Ru(II)/2-Mercaptopyrimidine Complexes. Dalton Trans. 2019;48(18):6026-6039.

Caballero MV, Candiracci M. Zebrafish as screening model for detecting toxicity and drugs efficacy. Journal of Unexplored Medical Data. 2018 Feb 10;3.

Aslantürk ÖS. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. InTech. 2018 Jul 11;2:64.

Lazic SE, Clarke-Williams CJ, Munafò MR. What exactly is 'N' in cell culture and animal experiments?. PLoS Biol. 2018 Apr 4;16(4):e2005282.

Wang P, Henning SM, Heber D. Limitations of MTT and MTS-Based Assays for Measurement of Antiproliferative Activity of Green Tea Polyphenols. PLoS One. 2010 Apr 16;5(4):e10202.

Ferreira I, Laranjo M, Marto CM, Casalta-Lopes J, Serambeque B, Gonçalves AC, et al. GuttaFlow(®) Bioseal Cytotoxicity Assessment: In Vitro Study. Molecules. 2020 Jan;25(18):4297.

Santos JM, Pereira S, Sequeira DB, Messias AL, Martins JB, Cunha H, et al. Biocompatibility of a bioceramic silicone-based sealer in subcutaneous tissue. J Oral Sci. 2019;61(1):171-177.

Delfino MM, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Sasso-Cerri E, Cerri PS. Immunoinflammatory response and bioactive potential of GuttaFlow bioseal and MTA Fillapex in the rat subcutaneous tissue. Sci Rep. 2020 Apr 28;10(1):1-5.

Bósio CC, Felippe GS, Bortoluzzi EA, Felippe MC, Felippe WT, Rivero ER. Subcutaneous connective tissue reactions to iRoot SP, mineral trioxide aggregate (MTA) Fillapex, DiaRoot BioAggregate and MTA. Int Endod J. 2014 Jul;47(7):667-674.

Gomes-Filho JE, Watanabe S, Lodi CS, Cintra LT, Nery MJ, Filho JA, et al. Rat tissue reaction to MTA FILLAPEX®. Dent Traumatol. 2012 Dec;28(6):452-456.

Zhang W, Peng B. Tissue reactions after subcutaneous and intraosseous implantation of iRoot SP, MTA and AH Plus. Dent Mater J. 2015 Nov 27;34(6):774-780.

Cannella V, Altomare R, Chiaramonte G, Bella SD, Mira F, Russotto L, et al. Cytotoxicity Evaluation of Endodontic Pins on L929 Cell Line. BioMed Res Int. 2019 Oct 30;2019.

Aslantürk Ö. In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. InTech. 2018;(8):512-520.

Jo HY, Kim Y, Park HW, Moon HE, Bae S, Kim J, et al. The Unreliability of MTT Assay in the Cytotoxic Test of Primary Cultured Glioblastoma Cells. Exp Neurobiol. 2015 Sep;24(3):235.

Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro. 2004 Oct 1;18(5):703-710.

Kuhn DM, Balkis M, Chandra J, Mukherjee PK, Ghannoum MA. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol. 2003 jan 1;41(1):506-508.

Duellman SJ, Zhou W, Meisenheimer P, Vidugiris G, Cali JJ, Gautam P, et al. Bioluminescent, Nonlytic, Real-Time Cell Viability Assay and Use in Inhibitor Screening. Assay Drug Dev Technol. 2015 Oct 1;13(8):456-465.

Yin LM, Wei Y, Wang Y, Xu YD, Yang YQ. Long term and standard incubations of WST-1 reagent reflect the same inhibitory trend of cell viability in rat airway smooth muscle cells. Int J Med Sci. 2013;10(1):68.

Stoddart MJ. WST-8 Analysis of Cell Viability During Osteogenesis of Human Mesenchymal Stem Cells, In Mammalian Cell Viability 2011 (pp. 21-25). Humana Press.

Bhatia S, Naved T, Sardana S. Introduction to animal tissue culture science. Introduction to Pharmaceutical Biotechnology. 2019;3:1-30.

Buskermolen JK, Reijnders CMA, Spiekstra SW, Steinberg T, Kleverlaan CJ, Feilzer AJ, et al. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part C Methods. 2016 Aug 1;22(8):781-791.

Soares AS, Scelza MZ, Spoladore J, Gallito MA, Oliveira F, Moraes RD, et al. Comparison of primary human gingival fibroblasts from an older and a young donor on the evaluation of cytotoxicity of denture adhesives. J Appl Oral Sci. 2018;26.

Candeiro GTM, Moura-Netto C, D'Almeida-Couto RS, Azambuja-Junior N, Marques MM, Cai S, et al. Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J. 2016 Sep;49(9):858-864.

Fonseca DA, Paula AB, Marto CM, Coelho A, Paulo S, Martinho JP, et al. Biocompatibility of Root Canal Sealers: A Systematic Review of In Vitro and In Vivo Studies. Materials (Basel). 2019 Jan;12(24):4113.

Key JE, Rahemtulla FG, Eleazer PD. Cytotoxicity of a New Root Canal Filling Material on Human Gingival Fibroblasts. J Endo. 2006 Aug 1;32(8):756-758.

Mandal P, Zhao J, Sah SK, Huang Y, Liu J. In vitro cytotoxicity of guttaflow 2 on human gingival fibroblasts. J Endo. 2014 Aug 1;40(8):1156-1159.

Konjhodzic-Prcic A, Gorduysus O, Kucukkaya S, Atilla B, Muftuoglu S, Zeybek D. In vitro comparison of cytotoxicity of four root canal sealers on human gingival fibroblasts. Medical Archieves. 2015 Feb;69(1):24.

Copyright (c) 2021 Journal of Biomedical and Clinical Sciences (JBCS)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Journal of Biomedical and Clinical Sciences (JBCS) publishes original research articles, short review, short communication, case reports, quiz and letter to editor that covering the areas of fundamental aspects of biomedical and clinical sciences, from pre-clinical towards translational research and their applications in medicine, dentistry and healthcare management. JBCS aims to provide a platform for basic science and clinical researchers to communicate and share their research findings to the advancement of technologies in biomedical and clinical sciences by providing maximum access to scholarly communication.

Flag Counter           


                                              Copyright © 2016 AMDI Publisher, Universiti Sains Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Sains Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
                                            Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.