Effect of statins on functional expression of membrane transporters in L6 rat skeletal muscle cells

Nur Salwani Binti Bakar, Farhad Kamali, Colin D. A Brown

Abstract


Background: Statins lower LDL-cholesterol and the risk of atherosclerosis. They are generally safe, although statin-induced myopathy is relatively common. Membrane transporters play a crucial role in determining statin side effects. Little is known regarding the interaction of drug transporters in muscle cells with statins. The present study aimed to determine the effect of statins on functional expression of monocarboxylate transporters (MCTs) and multidrug resistance-associated proteins (MRPs) in L6 rat skeletal myotube cells. Relative gene expression at mRNA level was confirmed by RT2 ProfilerTM Rat Drug Transporter PCR array (Catalogue no: PARN-070Z).The uptake of 3H-labelled DL-lactate (1 µCi/ml) was measured to functionally expressed MCT function. The inhibition of [3H]-DL-lactate uptake was assessed in the presence or absence of statins and compared to that of the MCT inhibitors, phloretin (well-defined MCT1 inhibitor) and α-cyano-4-hydroxycinnamate, CHC (a typical MCT1, 2 and 4 inhibitors). Transporter-mediated dye efflux was used as functional assay for the MRP efflux transporters. In L6 rat skeletal myotubes, relatively high mRNA expression level was observed for Mct1 (transcribed by Slc16a1 gene) and Mrp1 (transcribed by Abcc1 gene) for uptake and efflux transporters, respectively. The [3H]-DL-lactate uptake was shown to be a concentration-, pH-dependent and Na+-independent manner [Michaelis-Menten constant (Km) value of 16.17 ± 2.4 mM vs 15.63 ± 3.0 mM in the presence and absence of Na+, respectively]. The maximum velocity of substrate binding (Vmax) of the DL-lactate uptake inhibition by lipophilic statins; simvastatin and atorvastatin, were in the same order as phloretin and CHC, while no significant inhibitory magnitude with hydrophilic statins; pravastatin and rosuvastatin. However, the L6 rat skeletal myotubes did not exhibit lactate efflux function. Of four statins, only simvastatin showed an affinity inhibition of MRP function in L6 cells. This study has shown that lipophilic statins significantly inhibit functional expression of MCTs, though they have not shown relatively high inhibition impact on MRPs.

Full Text:

PDF

References


Lv HL, Jin DM, Liu M, Liu YM, Wang JF, Geng DF. Long-term efficacy and safety of statin treatment beyond six years: a meta-analysis of randomized controlled trials with extended follow-up. Pharmacological research. 2014;81:64-73.(http://www.sciencedirect.com/science/article/pii/S104366181400019X?np=y)

Pedersen TR, Kjekshus J, Berg K, Haghfelt T, Faergeman O, Faergeman G, et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 1994. Atherosclerosis Supplements. 2004;5(3):81-7. (http://www.sciencedirect.com/science/article/pii/S1567568804000662)

Ganga HV, Slim HB, Thomps on PD. A systematic review of statin-induced muscle problems in clinical trials. American heart journal. 2014;168(1):6-15. (http://www.sciencedirect.com/science/article/pii/S0002870314001653)

Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. The New England journal of medicine. 2008;359(8):789-99. (http://www.nejm.org/doi/full/10.1056/NEJMoa0801936)

Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenetics and genomics. 2006;16(12):873-9. (https://www.ncbi.nlm.nih.gov/pubmed/17108811)

Ballantyne CM, Corsini A, Davidson MH, Holdaas H, Jacobson TA, Leitersdorf E, et al. Risk for myopathy with statin therapy in high-risk patients. Archives of internal medicine. 2003;163(5):553-64. (https://www.ncbi.nlm.nih.gov/pubmed/?term=Risk+for+myopathy+with+statin+therapy+in+high-risk+patients.+Archives+of+internal+medicine)

Huerta-Alardin AL, Varon J, Marik PE. Bench-to-bedside review: Rhabdomyolysis -- an overview for clinicians. Critical care (London, England). 2005;9(2):158-69.

Jones PH, Davidson MH. Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any statin. The American journal of cardiology. 2005;95(1):120-2. (http://www.sciencedirect.com/science/article/pii/S0002914904014602)

Adijanto J, Philp NJ. The SLC16A family of monocarboxylate transporters (MCTs)--physiology and function in cellular metabolism, pH homeostasis, and fluid transport. Current topics in membranes. 2012;70:275-311. (http://www.sciencedirect.com/science/article/pii/B9780123943163000090)

Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. The Biochemical journal. 1999;343 Pt 2:281-99. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220552/)

Bouitbir J, Charles AL, Rasseneur L, Dufour S, Piquard F, Geny B, et al. Atorvastatin treatment reduces exercise capacities in rats: involvement of mitochondrial impairments and oxidative stress. Journal of applied physiology (Bethesda, Md : 1985). 2011;111(5):1477-83. (http://jap.physiology.org/content/111/5/1477.long)

Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2007;21(10):2602-12. (http://www.fasebj.org/content/21/10/2602.long)

Kobayashi M, Otsuka Y, Itagaki S, Hirano T, Iseki K. Inhibitory effects of statins on human monocarboxylate transporter 4. International journal of pharmaceutics. 2006;317(1):19-25. (http://www.sciencedirect.com/science/article/pii/S0378517306001906).

Liu HJ, Yu CP, Hsieh YW, Tsai SY, Hou YC. Inhibition of monocarboxylate transporter-mediated absorption of valproic acid by Gegen-Qinlian-Tang. The American journal of Chinese medicine. 2013;41(2):369-78. (http://www.worldscientific.com/doi/abs/10.1142/S0192415X13500274?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed&)

Morse BL, Vijay N, Morris ME. Mechanistic modeling of monocarboxylate transporter-mediated toxicokinetic/toxicodynamic interactions between gamma-hydroxybutyrate and L-lactate. The AAPS journal. 2014;16(4):756-70. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070269/)

Sirvent P, Bordenave S, Vermaelen M, Roels B, Vassort G, Mercier J, et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochemical and biophysical research communications. 2005;338(3):1426-34. (http://www.sciencedirect.com/science/article/pii/S0006291X05023600).

Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CD. The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule. Pflugers Archiv : European journal of physiology. 2012;464(6):601-11. (http://link.springer.com/article/10.1007%2Fs00424-012-1163-2).

Hashimoto T, Hussien R, Brooks GA. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. American journal of physiology Endocrinology and metabolism. 2006;290(6):E1237-44. (http://ajpendo.physiology.org/content/290/6/E1237.long).

Kobayashi M, Itagaki S, Hirano T, Iseki K. Mechanism of L-lactic acid transport in L6 skeletal muscle cells. Drug metabolism and pharmacokinetics. 2004;19(5):363-8. (https://www.jstage.jst.go.jp/article/dmpk/19/5/19_5_363/_article).

Kikutani Y, Kobayashi M, Konishi T, Sasaki S, Narumi K, Furugen A, et al. Involvement of Monocarboxylate Transporter 4 Expression in Statin-Induced Cytotoxicity. Journal of pharmaceutical sciences. 2016;105(4):1544-9. (http://www.sciencedirect.com/science/article/pii/S0022354916003105).

Nagasawa K, Nagai K, Ishimoto A, Fujimoto S. Transport mechanism for lovastatin acid in bovine kidney NBL-1 cells: kinetic evidences imply involvement of monocarboxylate transporter 4. International journal of pharmaceutics. 2003;262(1-2):63-73. (http://www.sciencedirect.com/science/article/pii/S0378517303003181).

Maciejewski H, Bourdin M, Feasson L, Dubouchaud H, Denis C, Freund H, et al. Muscle MCT4 Content Is Correlated with the Lactate Removal Ability during Recovery Following All-Out Supramaximal Exercise in Highly-Trained Rowers. Frontiers in physiology. 2016;7:223. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901069/).

Thomas C, Perrey S, Lambert K, Hugon G, Mornet D, Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Journal of applied physiology (Bethesda, Md : 1985). 2005;98(3):804-9. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976763/).

Wang Q, Lu Y, Yuan M, Darling IM, Repasky EA, Morris ME. Characterization of monocarboxylate transport in human kidney HK-2 cells. Molecular pharmaceutics. 2006;3(6):675-85. (http://pubs.acs.org/doi/abs/10.1021/mp060037b).

Juel C. Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles. Biochimica et biophysica acta. 1995;1265(2-3):127-32.

Broer S, Schneider HP, Broer A, Rahman B, Hamprecht B, Deitmer JW. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. The Biochemical journal. 1998;333 ( Pt 1):167-74. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219569/).

Brooks GA. Cell-cell and intracellular lactate shuttles. The Journal of physiology. 2009;587(Pt 23):5591-600. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805372/).

Brooks GA, Brown MA, Butz CE, Sicurello JP, Dubouchaud H. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. Journal of applied physiology (Bethesda, Md : 1985). 1999;87(5):1713-8. (http://jap.physiology.org/content/87/5/1713.long).

Hashimoto T, Brooks GA. Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Medicine and science in sports and exercise. 2008;40(3):486-94.

Bonifacio A, Mullen PJ, Mityko IS, Navegantes LC, Bouitbir J, Krahenbuhl S. Simvastatin induces mitochondrial dysfunction and increased atrogin-1 expression in H9c2 cardiomyocytes and mice in vivo. Archives of toxicology. 2016;90(1):203-15. (http://link.springer.com/article/10.1007%2Fs00204-014-1378-4).

Galtier F, Mura T, Raynaud de Mauverger E, Chevassus H, Farret A, Gagnol JP, et al. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers. Toxicology and applied pharmacology. 2012;263(3):281-6. (http://www.sciencedirect.com/science/article/pii/S0041008X12002797).

Kaufmann P, Torok M, Zahno A, Waldhauser KM, Brecht K, Krahenbuhl S. Toxicity of statins on rat skeletal muscle mitochondria. Cellular and molecular life sciences : CMLS. 2006;63(19-20):2415-25. (http://link.springer.com/article/10.1007%2Fs00018-006-6235-z).

Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicology and applied pharmacology. 2005;204(3):238-55. (http://www.sciencedirect.com/science/article/pii/S0041008X04004338).

Leslie EM, Deeley RG, Cole SP. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology. 2001;167(1):3-23. (http://www.sciencedirect.com/science/article/pii/S0300483X01004541).

Mueller CF, Widder JD, McNally JS, McCann L, Jones DP, Harrison DG. The role of the multidrug resistance protein-1 in modulation of endothelial cell oxidative stress. Circulation research. 2005;97(7):637-44. (http://circres.ahajournals.org/content/97/7/637.long).

Ellis LC, Hawksworth GM, Weaver RJ. ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicology and applied pharmacology. 2013;269(2):187-94. (http://www.sciencedirect.com/science/article/pii/S0041008X1300121X).

Reiner Z. Resistance and intolerance to statins. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2014;24(10):1057-66. (http://www.sciencedirect.com/science/article/pii/S0939475314001732).

Rodrigues AC. Efflux and uptake transporters as determinants of statin response. Expert opinion on drug metabolism & toxicology. 2010;6(5):621-32. (http://www.tandfonline.com/doi/full/10.1517/17425251003713519).

Buchler M, Konig J, Brom M, Kartenbeck J, Spring H, Horie T, et al. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMrp, reveals a novel conjugate export pump deficient in hyperbilirubinemic mutant rats. The Journal of biological chemistry. 1996;271(25):15091-8. (http://www.jbc.org/content/271/25/15091.long).

Konig J, Rost D, Cui Y, Keppler D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology (Baltimore, Md). 1999;29(4):1156-63. (http://onlinelibrary.wiley.com/doi/10.1002/hep.510290404/abstract;jsessionid=3FC22BDD290C214F8AD8768C5EFA7C07.f01t04).

Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ, Leake BF, et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circulation research. 2010;106(2):297-306. (http://circres.ahajournals.org/content/106/2/297.long).

Dorajoo R, Pereira BP, Yu Z, Gopalakrishnakone P, Leong CC, Wee A, et al. Role of multi-drug resistance-associated protein-1 transporter in statin-induced myopathy. Life sciences. 2008;82(15-16):823-30.




Copyright (c) 2017 Journal of Biomedical and Clinical Sciences (JBCS)



 

Flag Counter           

                     

                                              Copyright © 2016 AMDI Publisher, Universiti Sains Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Sains Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
                                            Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.